人工智能用于搜索
发布时间:2017/6/1 10:45:39来源:本站原创字体: 大 中 小
即使没有RankBrain这种确定使用人工智能的算法,我们也能猜到,搜索引擎花这么大精力研究人工智能,肯定不止是在外围或新业务上使用,他们没理由不把人工智能用在自己的核心业务,也就是搜索上。
仔细思考一下就知道,AlphaGo下围棋与搜索排名要解决的问题看似谁也不挨谁,但其本质是非常相像的,是可以用同一种方式解决的:
•AlphaGo通过学习无数盘棋,其中有人类的历史棋局,更多的是AlphaGo自我对局,累积海量数据,面对某一盘面时做出判断:下一手,子下在哪里胜率比较高?
•搜索引擎排名算法通过学习质量评估员给出的数据、搜索用户点击访问数据等,面对某一个页面时做出判断:这个页面是高质量还是低质量的?这个页面作弊了吗?这个页面与查询词相关还是不相关?
传统搜索算法要回答上面问题时,需要工程师根据常识、工程知识、情怀、用户反馈等情况,选出排名因素,调整排名因素的权重,按既定的公式计算出答案。人工智能为基础的算法不需要工程师告诉它使用什么排名因素,而是自己去学习,自己琢磨用哪些排名因素,各占多少权重。人工智能考虑的因素很可能是会令人类觉得莫名其妙的。
吴军老师在《智能时代》中说过一句话,可以特别贴切地用于理解这种情形:在智能时代,可以在大数据中直接找到答案,虽然可能不知道原因(大意)。传统搜索算法,工程师要知道原因,才能写算法。人工智能直接从数据中找答案,虽然工程师都不知道原因。
人工智能的最大缺点,对人来说的缺点,它对人来说是个黑盒子,工程师也不知道它是怎么算的,根据什么算的。结果正确时,一切都挺好,但结果不大对头时,工程师也不知道为什么错了,还不好debug。也许由于这个原因,搜索引擎算法的核心现在还没被人工智能取代,搜索引擎需要很谨慎,不然会错得自己都不知道为什么错。
更多深圳网站维护,深圳网站托管,深圳
网站建设,深圳网站推广资讯点击首页了解。
返回